Important properties and formulas

Triangle law of vector addition \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} $1. (a)$

Parallelogram law of vector addition : If ABCD is a parallelogram, then \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC} (b)

(c) If
$$
\vec{r_1} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}
$$
 and $\vec{r_2} = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}$ then

$$
\vec{r_1} + \vec{r_2} = (x_1 + x_2)\hat{i} + (y_1 + y_2)\hat{j} + (z_1 + z_2)\hat{k}
$$

and
$$
r_1 = r_2 \Leftrightarrow x_1 = x_2, y_1 = y_2, z_1 = z_2
$$

2. (a)
$$
a
$$
 and b are parallel if and only if $a = m$ b for some non-zero scalar m .

(b)
$$
\hat{a} = \frac{\vec{a}}{|\vec{a}|}
$$
 or $\vec{a} = |\vec{a}|\hat{a}$

(c) Associative law:
$$
m(n\vec{a}) = (mn)\vec{a} = n(m\vec{a})
$$

(d) Distributive laws:
$$
(m + n)a = ma + na
$$
 and $n(a + b) = na + nb$

If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ then $m\vec{r} = mx \hat{i} + my \hat{j} + mz \hat{k}$ (e)

- \vec{r} , \vec{a} , \vec{b} are coplaner if and only if \vec{r} = $x\vec{a}$ + $y\vec{b}$ for some scalars x and y (f)
- If the position vectors of the points A and B be \overrightarrow{a} and \overrightarrow{b} then, $3. (a)$

(i) The position vectors of the points dividing the line AB in the ratio m :n internally and externally

are $\frac{mb + na}{\overline{ab} + \overline{ba}}$ and $\frac{mb - na}{\overline{ba}}$

(ii) Position vector of the middle point of AB is given by $\frac{1}{2}(\vec{a}+\vec{b})$

(iii)
$$
\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}
$$

- If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$ (b)
- The points A,B,C will be collinear if and only if $\overrightarrow{AB} = m \overrightarrow{AC}$, for some non zero scalar m. (c)

(d) Given vectors
$$
x_1a + y_1b + z_1c
$$
, $x_2a + y_2b + z_2c$, $x_3a + y_3b + z_3c$, where a, b, c are non

-coplanar vectors, will be coplanar if and only if $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0$

(e) Method to prove four points to be coplanar : To prove that the four points A,B,C and D are coplanar. Find the vector \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} and then prove them to be coplanar by the metod of coplanarity i.e. one of them is a linear combination of the other two.

 $|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$ (f)

- $|\vec{a} + \vec{b}| \geq |\vec{a}| |\vec{b}|$
- $|\vec{a}-\vec{b}| \leq |\vec{a}| + |\vec{b}|$
- $|\vec{a}-\vec{b}| \geq |\vec{a}| |\vec{b}|$

Dot product of two vectors

(a) a. b = ab cos
$$
\theta
$$
, where $0 \le \theta \le \pi$

(b)
$$
\vec{a} \cdot \vec{b} = a
$$
 (Projection of \vec{b} along \vec{a})

(c) Projection of
$$
\vec{b}
$$
 along $\vec{a} = \frac{b \cdot a}{\vec{a}}$

(d) The vector perpendicular to both
$$
a
$$
 and b is given by $\vec{a} \times \vec{b}$

The unit vector perpendicular to both \vec{a} and \vec{b} is given by $\hat{n} = \frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$

(e)
$$
\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} = 0 \text{ or } \vec{b} = 0
$$

(f) Component of a vector
$$
\vec{r}
$$
 in the direction of \vec{a} and perpendicular to \vec{a} are $\left(\frac{\vec{r} \cdot \vec{a}}{|\vec{a}|^2}\right) \vec{a}$ and

$$
\vec{r} - \left\{ \frac{(\vec{r} \cdot \vec{a})}{|\vec{a}|^2} \right\} \vec{a}
$$
 respectively.

If \vec{a} and \vec{b} are the non-zero vectors, then $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$ (g)

(h)
$$
\cos\theta = \hat{a} \cdot \hat{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}
$$

\n(i) $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
\n $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{i} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = \hat{i} \cdot \hat{k} = 0$
\n(j) If $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$ i.e. if $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then
\n(i) $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
\n(ii) $\cos\theta = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$
\n(iii) \vec{a} and \vec{b} will be perpendicular if and only if $a_1b_1 + a_2b_2 + a_3b_3 = 0$

(iv)
$$
\vec{a}
$$
 and \vec{b} will be parallel if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

The product of vectors \vec{a} and \vec{b} is denoted by $\vec{a} \times \vec{b}$. (a)

 $\vec{a} \times \vec{b} = (\left| \vec{a} \right| \left| \vec{b} \right| \sin \theta) \hat{n}$

- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (b)
- If $\vec{a} = \vec{b}$ or if \vec{a} is parallel to \vec{b} , then $\sin\theta = 0$ and so $\vec{a} \times \vec{b} = 0$ (c)

(d) Distributive laws:
$$
\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}
$$
 and $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$
\n(e) The vector product of a vector \vec{a} with itself is a null vector, i.e. $\vec{a} \times \vec{a} = \vec{0}$
\n(f) if $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then
\n(i) $\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$
\n(ii) $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
\n(iii) $\sin^2\theta = \frac{(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2}{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}$

If two vectors \vec{a} and \vec{b} are parallel, then $\theta = 0$ or π i.e. sin $\theta = 0$ in both cases (g)

$$
\therefore (a_1b_2 - a_2b_1)^2 + (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 = 0
$$

\n
$$
\Rightarrow a_1b_2 - a_2b_1 = 0, \ a_2b_3 - a_3b_2 = 0, \ a_3b_1 - a_1b_3 = 0
$$

$$
\Rightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2}, \quad \frac{a_2}{b_2} = \frac{a_3}{b_3}, \quad \frac{a_3}{b_3} = \frac{a_1}{b_1} \quad \Rightarrow \quad \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}
$$

Thus, two vectors \vec{a} and \vec{b} are parallel if their corresponding co, ponents are proportional.

(h) Area of the parallelogram ABCD =
$$
|\overrightarrow{AB} \times \overrightarrow{AD}|
$$
 or $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$

(i) Area of the triangle ABC =
$$
\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|
$$