Important properties and formulas

1. (a) Triangle law of vector addition $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

(b) Parallelogram law of vector addition : If ABCD is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$

(c) If
$$\vec{r_1} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$
 and $\vec{r_2} = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}$ then

$$\vec{r_1} + \vec{r_2} = (x_1 + x_2)\hat{i} + (y_1 + y_2)\hat{j} + (z_1 + z_2)\hat{k}$$

and
$$\mathbf{r}_1 = \mathbf{r}_2 \iff \mathbf{x}_1 = \mathbf{x}_2, \ \mathbf{y}_1 = \mathbf{y}_2, \ \mathbf{z}_1 = \mathbf{z}_2$$

- (b) $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ or $\vec{a} = |\vec{a}|\hat{a}$
- (c) Associative law: m(na) = (mn)a = n(ma)
- (d) Distributive laws: $(m + n)\vec{a} = m\vec{a} + n\vec{a}$ and $n(\vec{a} + \vec{b}) = n\vec{a} + n\vec{b}$
- (e) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $m\vec{r} = mx\hat{i} + my\hat{j} + mz\hat{k}$
- (f) \vec{r} , \vec{a} , \vec{b} are coplaner if and only if $\vec{r} = x\vec{a} + y\vec{b}$ for some scalars x and y
- 3. (a) If the position vectors of the points A and B be \vec{a} and \vec{b} then,

(i) The position vectors of the points dividing the line AB in the ratio m :n internally and externally

are $\frac{m\vec{b} + n\vec{a}}{m+n}$ and $\frac{m\vec{b} - n\vec{a}}{m-n}$

(ii) Position vector of the middle point of AB is given by $\frac{1}{2}(\vec{a} + \vec{b})$

(iii)
$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

- (b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$
- (c) The points A,B,C will be collinear if and only if $\overrightarrow{AB} = m \overrightarrow{AC}$, for some non zero scalar m.

(d) Given vectors
$$x_1 a + y_1 b + z_1 c$$
, $x_2 a + y_2 b + z_2 c$, $x_3 a + y_3 b + z_3 c$, where $\vec{a}, \vec{b}, \vec{c}$ are non

-coplanar vectors, will be coplanar if and only if $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0$

(e) Method to prove four points to be coplanar : To prove that the four points A,B,C and D are coplanar. Find the vector \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} and then prove them to be coplanar by the metod of coplanarity i.e. one of them is a linear combination of the other two.

(f) $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$

- $|\vec{a} + \vec{b}| \geq |\vec{a}| |\vec{b}|$
- $|\vec{a} \vec{b}| \leq |\vec{a}| + |\vec{b}|$
- $|\vec{a} \vec{b}| \geq |\vec{a}| |\vec{b}|$

Dot product of two vectors

(a) a. b = ab
$$\cos\theta$$
, where $0 \le \theta \le \pi$

(c) Projection of
$$\vec{b}$$
 along $\vec{a} = \frac{b.a}{|\vec{a}|}$

(d) The vector perpendicular to both a and b is given by
$$\mathbf{a} \times \mathbf{b}$$

The unit vector perpendicular to both \vec{a} and \vec{b} is given by $\hat{n} = \frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$

(e)
$$\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} = 0 \text{ or } \vec{b} = 0$$

(f) Component of a vector
$$\vec{r}$$
 in the direction of \vec{a} and perpendicular to \vec{a} are $\left(\frac{\vec{r} \cdot \vec{a}}{|\vec{a}|^2}\right)\vec{a}$ and

$$\vec{r} = \left\{ \vec{(r,a)} \\ \vec{|a|^2} \right\} \vec{a}$$
 respectively.

(g) If \vec{a} and \vec{b} are the non-zero vectors, then $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$

(h)
$$\cos\theta = \hat{a} \cdot \hat{b} = \frac{\vec{a} \cdot \vec{b}}{|a| \cdot |b|}$$

(i) $\hat{l} \cdot \hat{l} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
 $\hat{l} \cdot \hat{j} = \hat{j} \cdot \hat{l} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{l} = \hat{l} \cdot \hat{k} = 0$
(j) If $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$ i.e. if $\vec{a} = a_1 \hat{j} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then
(i) $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
(ii) $\cos\theta = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$
(iii) \vec{a} and \vec{b} will be perpendicular if and only if $a_1 b_1 + a_2 b_2 + a_3 b_3 = 0$

(iv)
$$\vec{a}$$
 and \vec{b} will be parallel if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

(a) The product of vectors \vec{a} and \vec{b} is denoted by $\vec{a} \times \vec{b}$.

 $\vec{a} \times \vec{b} = (|\vec{a}| |\vec{b}| \sin \theta)\hat{n}$

- (b) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- (c) If $\vec{a} = \vec{b}$ or if \vec{a} is parallel to \vec{b} , then $\sin\theta = 0$ and so $\vec{a} \times \vec{b} = 0$

(d) **Distributive laws**:
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
 and $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$
(e) The vector product of a vector \vec{a} with itself is a null vector, i.e. $\vec{a} \times \vec{a} = \vec{0}$
(f) if $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ then
(i) $\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$
(ii) $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
(iii) $\sin^2\theta = \frac{(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2}{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}$

(g) If two vectors \vec{a} and \vec{b} are parallel, then $\theta = 0$ or π i.e. $\sin\theta = 0$ in both cases

$$\therefore (a_1b_2 - a_2b_1)^2 + (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 = 0$$

$$\Rightarrow a_1b_2 - a_2b_1 = 0, \ a_2b_3 - a_3b_2 = 0, \ a_3b_1 - a_1b_3 = 0$$

$$\Rightarrow \ \frac{a_1}{b_1} = \frac{a_2}{b_2}, \quad \frac{a_2}{b_2} = \frac{a_3}{b_3}, \ \frac{a_3}{b_3} = \frac{a_1}{b_1} \qquad \Rightarrow \ \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$

Thus, two vectors \vec{a} and \vec{b} are parallel if their corresponding co, ponents are proportional.

(h) Area of the parallelogram ABCD =
$$|\overrightarrow{AB} \times \overrightarrow{AD}|$$
 or $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$

(i) Area of the triangle ABC =
$$\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$$